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1 Introduction 

The use of Semantic Web technologies [1] within the Internet of Things is a very 

promising area of research and development. It allows for the unification of a huge 

amount of proprietary APIs into one set of standardized APIs for accessing and link-

ing data not only between Things in the network, but also between services and con-

sumers, regardless of who has published the data, and where it is stored. It replaces 

the more difficult problem of implementing and supporting a huge array of proprie-

tary communication APIs and protocols with the simpler problem of mapping or un-

derstanding the information provided by different Things all provided using standard-

ized communication and data extraction techniques. 

The traditional way of basing the Semantic Web on the HTTP protocol [2] howev-

er, has implied several limitations on the usefulness of this technique, especially when 

Things move closer to the private spheres of end-users, such as within people’s 

homes, inside office buildings, etc. As long as all Things are publicly available on the 

Internet, HTTP works fine, but as soon as the content starts moving into areas where 

access is limited by firewalls, HTTP as a transport method starts failing, since connec-

tions most often can only be established from the inside out. If the SPARQL [3] end-

point resides outside of the firewall, it cannot reach Things residing inside the firewall 

using normal HTTP. 

The same problem exists within the Internet of Things in general and not only to 

semantic web applications. All request/response-based communication protocols in-

herently have this problem. To solve this problem of communication between Things 
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behind firewalls within the Internet of Things community, various solutions have 

been proposed: 

1. Publish/Subscribe architecture patterns 

2. Cloud storage of data 

3. Peer-to-Peer communication 

4. Hybrid approaches 

1.1 Publish/Subscribe architecture pattern 

The publish/subscribe architecture pattern [4] basically consists of three types of 

actors: Publishers, message brokers and subscribers. Publishers generate content and 

publish it to a message broker. The message broker then immediately distributes the 

content, or information about the content, to subscribers having subscribed to the 

particular content. 

Here, publishers and subscribers connect to the message broker and can therefore 

reside behind firewalls. The message broker however, needs to be reachable by all 

actors in the network. 

 

Fig. 1. Publish/Subscribe pattern 

Here, all publishers and subscribers connect to the broker, bypassing any firewall 

restrictions on traffic in the opposite direction. Subscribers are also required to main-

tain the connection with the broker, to be able to receive the corresponding infor-

mation. The flow of information however, is from left to right in the image. Publish-

ers can of course be subscribers also. 

The publish/subscribe architecture is very efficient in distributing messages in 

large networks, however, it only supports one type of communication pattern: Things 

publishing information, consumed by others. It is very difficult to create an environ-
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ment permitting two-way communication and impossible for the publishers to control 

who gets access to what, which makes it impractical and useless in semantic web 

applications. 

There are various protocols that readily provides publish/subscribe architecture 

support, like XMPP [5] with its publish-subscribe extension [6]. There are also proto-

cols or platforms that are designed primarily with publish/subscribe in mind, like 

MQTT [7]. One could also see web platforms as Twitter [8] working according to the 

publish/subscribe pattern. 

1.2 Cloud storage of data 

Cloud storage of data uses a similar approach as publish/subscribe, except that 

there’s no actual subscription of data involved providing data in real-time. Publishers 

publish data to a server, which in turn always stores it for future access. Consumers of 

the data are required to poll data from the server regularly or on demand. There exist 

however solutions implementing custom triggers that can notify clients of events. 

These can in turn be used to closely mimic the publish/subscribe pattern of immediate 

content delivery to the final recipients. 

Data published on servers are typically available through some sort of API. Com-

mon APIs can be RESTful web services [9] returning XML, either proprietary for-

mats or standardized formats such as RSS [10] or ATOM [11]. JSON is also popular 

since it allows for easy implementation in script languages. 

 Examples of platforms that use this technique for Internet of Things applications 

include Xively [12], Open.sen.se [13], Sics
th

Sense [14] etc. 

Even though this architectural pattern partly lends itself to incorporation of Internet 

of Things into the semantic web, it does so only with difficulty and great limitations 

imposed on it: 

First, only historic data published on the server will be available on the semantic 

web. There can be no direct interaction with the Things that published the information 

without introducing significant latency. Secondly, the publishers have no control of 

who can see what data. Thirdly, the publishers lose control and ownership of the data, 

making changes or removal difficult. Fourthly, the risk of exposing private data to 

unknown corporate or government interests is great if the data is stored centrally, 

minimizing the desire of end-users to use the approach when it comes to private in-

formation. Companies that want to exploit the information and sell data mining and 

big data services of course see no problem with this approach. 

1.3 Peer-to-peer communication 

Peer-to-peer communication techniques originally developed for file sharing, in-

stant messaging or gaming applications have become a promising field of research for 

Internet of Things also, in particular since these techniques provide a mechanism for 

devices to talk to each other, even though they reside behind different firewalls. 



There are many different peer-to-peer protocols available that solve the problem on 

how to bypass firewall in different ways. Following is a non-exhaustive list of popular 

ways to achieve peer-to-peer functionality in networks: 

Internet Group Management Protocol IGMP [15] is a way to send IP multicast 

messages. In networks where firewalls permit IGMP communication peers can sub-

scribe to IP multicast addresses and routers will forward communication to all sub-

scribed peers. Anyone partaking in a conversation can both send and receive infor-

mation. The architecture is similar to that of the publish/subscribe pattern, with the 

exception that routing is done on a network layer in routers and not in the application 

layer of a message broker. Also, IGMP doesn’t allow for a fine grained subscription 

model, where you can subscribe to specific topics. Anything sent on a multi-cast 

channel will be received by all subscribers of that channel, unless packets are lost. 

Secure packet delivery is not available. Another big disadvantage is that everybody 

subscribed to the multicast address will receive all messages. CPU load will increase 

as the number of senders grows, and it is difficult to send private messages. 

IGMP is popular in streaming services, especially in IP-TV networks, as it allows 

for efficient distribution of information where loss of packets doesn’t affect the quali-

ty of the service. In order to create point-to-point communication using IGMP it is 

required to add a secondary addressing mechanism to make sure the recipients know 

what packets are meant for them and what are meant for others. For this reason IGMP 

only serves to solve certain aspects of IoT-based communication, mostly concerned 

with discovery of devices. Examples that use this technique for device discovery in-

clude SSDP [16] on which UPnP [17] and DLNA [18] are based. Multicast DNS [19] 

is another discovery method using IGMP. Multicast DNS is used by Bonjour [20] and 

XMPP server-less messaging [21]. 

To circumvent the problems of multicasting, and create a Peer-to-peer protocol 

based on single-casting, i.e. point-to-point communication, other mechanisms have to 

be incorporated to bypass any firewalls. One such collection of methods goes by the 

collective name NAT transversal [22]. It includes a series of different techniques, 

none guaranteed to work in all settings, since NAT transversal is not standardized. 

Basically it includes methods where the firewalls are programmed to forward messag-

es received on their public IP addresses, with given port numbers, to corresponding 

private IP addresses and corresponding port numbers behind the firewall. This some-

times goes by the name of punching holes in the firewall. It can also include the in-

corporation of publically available servers that route messages, just like message bro-

kers do. 

Unbeknown to many, NAT transversal may actually create a big security problem 

for its users, since it partly removes the original function of the firewall: Not let unau-

thorized or unauthenticated users access private resources on the network. Popular 

protocols such as UPnP allows devices to automatically punch holes in the firewall 

allowing external actors, friends but also foes, to access devices on the network, creat-

ing security holes that are easy to exploit [23]. 

Peer-to-peer networks are normally divided into two different types of networks: 

Unstructured and structured peer-to-peer networks. Unstructured networks have no 

explicit network topology, and peers connect to each other “randomly” or though 



friendship requests. One of the problems such networks have is that finding useful 

resources is a difficult problem. Normally, peers can only ask known peers if they 

have access to a given resource. These peers can forward the question to their peers, 

and so on, until the resource if found. This normally works well for well-known re-

sources. But for scarce resources, such questions impose a great load on the network. 

To solve this problem, many solutions have been developed defining an explicit 

network topology including centralized resources to manage content, searching, ac-

cess privileges, etc. These solutions range from content directories, to access privileg-

es, friendships, scheduling, task lists, etc. Even though they require the use of central-

ized publically available servers they are considered peer-to-peer networks, albeit 

structured peer-to-peer networks, as the actual peer-to-peer communication is later 

done directly between peers. 

1.4 Hybrid approaches 

Had it not been for the security issues described in the previous section, peer-to-

peer network architecture might have been a perfect candidate for the Internet of 

Things due to its flexibility when it comes to point-to-point communication between 

peers in the network. The publish/subscribe pattern described earlier does not have 

this vulnerability: As devices behind firewalls all connect to a message broker that 

redistributes messages to interested parties, and no holes are punched in the firewall, 

it’s impossible for external parties to connect directly to the device. 

This motivates the use of hybrid approaches, using federated message brokers, but 

having an architecture permitting point-to-point communication instead of one-to-

many types of communication. As devices all connect to a message broker, external 

entities cannot connect to the devices, unless the message broker authenticates the 

device and authorizes its relationship with the original device. Even though this adds 

a component to the network, it is not much different from other publically available 

components available in structured peer-to-peer networks, as described earlier. It is 

even similar to the case where NAT-transversal requires the use of a public proxy 

server to forward messages between peers. For this reason, we will call this hybrid 

approach peer-to-peer-like communication. It works as a peer-to-peer protocol on 

the application layer, but not on the network layer.  

Apart from fulfilling these requirements we also want the protocol to be open, 

standardized, efficient and easy to extend without the possibility of confusion. XMPP 

meets all these requirements [24]. XMPP was originally defined for use in instant 

messaging applications, which can be seen in the acronym “eXtensible Messaging 

and Presence Protocol”. It is based on XML and use of namespaces makes XMPP 

extensible and easy to extend without creating conflicts. It is also standardized by 

IETF. Extensions to the protocol are published and maintained by the XMPP Stand-

ards Foundation [25]. There’s a huge list of extensions available to XMPP [26], show-

ing how the protocol has grown from its original domain to become a versatile proto-

col for the Internet in general and the Internet of Things in particular. As will be 

shown in this paper, XMPP also provides architectural support for a logical extension 

of the Semantic Web into the Internet of Things. A recent extension also provides a 



mechanism of efficiently compressing XMPP messages, permitting the use of XMPP 

in wireless sensor networks with limited maximum package sizes [27]. 

XMPP also adds a security mechanism whereby clients are authenticated, and the 

broker also makes sure each client sending a message to another is authorized to do 

so. This adds a layer of added security to the network. A recent extension of the pro-

tocol permits even better control of who can talk to whom, and what they can talk 

about, what services are available to whom, permitting provisioning of devices and 

services in Internet of Things networks [28]. If end-to-end encryption is desired, to 

make sure the message broker cannot eavesdrop on the conversation, work is being 

done within IETF to solve this issue as well [29].  Extensions also exist for communi-

cation of sensor data [30], controlling devices [31] and bridging legacy or proprietary 

protocols and interfacing subsystems [32]. 

Furthermore, XMPP can be used in server-less mode using a small memory foot-

print, as is demonstrated by Ronny Klauck and Michael Kirsche in their work related 

to Chatty Things [33] [34]. Interesting Internet of Things-related projects and groups 

include a working group within IEEE/IEC/ISO [35], KTC [36] [37] and SUST [38] 

[39]. Work is also underway to define common interoperable interfaces for Internet of 

Things, based on available extensions [40]. A repository for XMPP-related research 

papers is also available at Mendeley [41]. The XMPP wiki also has a section dedicat-

ed to the Internet of Things [42]. 

2 Bridging the semantic web and XMPP networks 

As was described in the previous section, the peer-to-peer-like network architec-

ture provided by XMPP and available extensions permits us to create secure and in-

teroperable networks for the Internet of Things, including an architecture for provi-

sioning with fine-grained control of who can talk to whom, who has access to what 

information, who can control what and what services should be available to whom. 

This section will describe how this architecture can be used by semantic web applica-

tions as well. 

Traditional semantic web applications are forced to use normal HTTP over TCP or 

TLS connections. Security is limited to HTTP-based authentication which is very 

coarse and difficult to implement and manage on small devices. Leaving the imple-

mentation of web security to device manufacturers furthermore increases the risk of it 

being completely ignored. Reutilizing the existing security framework provided by 

XMPP networks, where such security features as user authentication and authoriza-

tion is automatically provided by the message broker, therefore automatically pro-

vides the network with a better security model than what can be provided by normal 

HTTP over TCP or TLS. 

The HTTP over XMPP transport extension [43] provides a mechanism to transport 

ordinary HTTP requests and responses over an XMPP network. Apart of supporting 

different HTTP versions, all HTTP methods and HTTP header semantics, it allows for 

various efficient encodings and transport schemes for efficient transfer of different 

types of data, including text, XML (allowing efficient compression if EXI is used), 



binary base64-encoding, chunked encoding for dynamic content, file transfer [44] for 

transfer of existing files, In-band byte streams [45] and Jingle [46] for different types 

of streaming. 

It also proposes a new URI scheme: httpx for easy integration into systems and 

browsers using URLs to identify resources. As the Semantic Web and Linked Data 

are based on IRIs, IRI being a generalization of URI, this permits the extension of the 

Semantic Web onto peer-to-peer-like XMPP networks seamlessly. 

The Clayster platform [47] has been used to build various semantic web applica-

tions in different constellations. The Clayster platform can be hosted on both Win-

dows servers in clustered environments, or on Linux platforms using Mono [48], and 

provides a web 3.0
1
 runtime environment including a SPARQL 1.1 endpoint, web 

server, integrated XMPP support, pluggable Internet of Things architecture including 

multi-protocol support, pluggable object database and a powerful engine for 10-foot 

user interface [49] applications optimized for mobile phones, televisions and touch 

pads. 

 

                                                           
1  Web use the term web 3.0 as a synonym of a distributed semantic web fused with Internet of 

Things. The fundament of web 3.0 [52] is Linked Data. 
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Fig. 2. Federated query accessing private information 

Figure 2 shows a constellation where an application is asking a central web server 

running Clayster to create a report using a single federated SPARQL query. In the 

graph, solid lines represent actual socket connections, and the direction of the arrow 

shows the direction of the connection. Dashed lines represent peer-to-peer-like com-

munication made over the underlying XMPP network and the direction of the arrow 

represents the direction of the request/response-based communication. The SPARQL 

engine joins data together from publically available RDF(a) data sources using normal 

HTTP or HTTPS, but also from privately hosted RDF data sources and from the re-

sults of federated queries to private SPARQL endpoints behind firewalls. In these 

cases, the httpx URI scheme [43] is used. Both the private RDF source and the private 

SPARQL Endpoint are hosted on separate Clayster platforms. The XMPP server acts 

as a guarantor that the main SPARQL endpoint can access the private data. Since 

XMPP is used, no holes are punched in the firewalls, and the private data remains 

private and only accessible from parties with access according to the provisioning 

server (also hosted on the Clayster platform). The provisioning server can also pro-

vide fine-grained control on what data from what devices the end user has the right to 

see. 
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Fig. 3. Mobile phone accessing private web application 

Figure 3 shows another constellation using the same protocols achieving a com-

pletely different application. This time, it is a web application hosted on a plug com-

puter running the Clayster platform on Mono. Instead of hosting private information 

like private photos, videos, cameras at home, etc., on a web server in the cloud, the 

content is hosted privately on a cheap and power efficient plug computer. It is acces-

sible as a normal web application within the boundaries of the local network protected 

by the firewall. But by using the httpx URI scheme the web application becomes 

available from everywhere where the federated XMPP server is reachable, but only to 

authenticated and authorized parties. Which ones is controlled by the XMPP Server 

and complemented by the provisioning server. The web application can also access 

private content in other domains, such as for example, the web camera in a common 

room or a neighbor that trusts you, by returning URL’s to the content, using the httpx 

URI scheme itself. The provisioning server gives added control of what can be shared 

with what parties. In the example above, the mobile phone would have access to all 

local content, sensor values and cameras, while an Automated Reading System would 

only have access to the Accumulated Energy value of a given Electricity Meter, and 

no other sensor values. 

3 Conclusion 

Semantic web technologies provide for a very powerful set of tools to be used 

within the Internet of Things. Not only do semantic technologies provide a powerful 

abstraction of data, the technologies also resolve the problem of maintaining uncount-

able number of different proprietary APIs for communication with devices or systems 

from different manufacturers. Through the use of federation semantic web technolo-

gies also provide a standardized way to perform actions on a grid of devices as a 

whole. 

The biggest challenge of semantic web technologies however, is how to solve ac-

cess rights to private information, which is of paramount importance to the Internet of 

Things. This cannot be sufficiently solved by using the traditional HTTP model. 

HTTP authentication simply does not provide sufficient protection, granularity and 

manageability across large networks of devices with limited user interfaces. Further-

more, the use of previous existing architectural patterns adapts very poorly to the 

semantic web or implies huge restrictions on the Internet of Things as a concept. 

The introduction of HTTP over XMPP changes this radically. It permits access to 

HTTP resources behind firewalls without the use of unsafe firewall hole punching 

techniques, or without publishing private and sensitive information in the cloud. It 

furthermore allows the end-user in a simple way to control who gets access to the 

material. Using provisioning servers based on published extensions of XMPP fur-

thermore permits fine-grained control of what data can be accessed by whom and 

which services they are allowed to use. 
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